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AbsCract-The dynamic stability of simple supported perfect columns made of a linearly viscoelastic
material and subjected to an axial compressive load, P, smaller than the classical Euler elastic buckling
load, p... is examined. The solution to the integro-dilferential equation is obtained by means of Laplace
transforms. In addition, an approximate solution is also derived by adopting the approximation technique
introduced inllj. The results are applied to a simple "three-element model" viscoelastic column.

I. INTRODUCTION
Among stability problems for structures made of viscoelastic materials, the stability of
columns is one of the more interesting problems which has been the subject of a large number
of investigations during the last three decades. Many different stability criteria, analysis
techniques and material laws have been used or suggested (see [2-8]). In addition to the
assumptions introduced with respect to the constitutive laws, various approximate solution
techniques have also been employed [1, 9-12]. Consequently, results obtained for the same
problem by different investigators vary, depending on the criteria and assumptions used.

The classical Euler method may not be applied to the stability of perfect columns made of a
linearly viscoelastic material subjected to an axial compressive load smaller than the classical
Bular elastic buckling load unless the existence of an adjacent equilibrium position in addition
to the initial configuration is proven. A dynamic approach, on the other hand, can be used for
the stability analysis of such perfect columns since such an approach does not depend on the
equilibrium concept. Therefore, the aim of this paper is to examine the dynamic stability of a
perfect column made of a linearly viscoelastic material and to compare the results obtained
from an "exact" solution with those derived in both the dynamic and quasi-static case using an
approximation technique presented in [1].

Here, the stability of such a perfect column subjected to an axial compression load, P,
smaller than the classical Euler elastic buckling load, P~ is examined. The applied load P is
assumed to be constant in time. The constitutive equation of the material is given in functional
form with the restriction that the column is at rest at times t < O. For the sake of simplicity the
temperature dependence is not taken into account in the functional. Furthermore, it is assumed
that the material is elastic at t = 0 and that the functional characterizing the viscoelastic
property of the material is bounded as t ... 00. It is also assumed that the column is disturbed laterally
by a sinusoidal velocity field with amplitude Vo at midspan as soon as the load P is applied.

Using the constitutive equation and the kinematical relations in the equation of motion, the
governing equation of the problem is obtained in the form of an integro-differential equation. The
solution to this equation is obtained by means of Laplace transforms. Since the denominator of
the transformed function is a cubic, an inverse transform is obtained numerically for the case of a
"three element model" viscoelastic column, for several load levels (see Fig. 3). Neglecting the
inertia force in the equation of motion, a quasi-static solution is also derived. In addition, an
approximate solution for both the dynamic and quasistatic case is given by adopting the
approximation technique for the constitutive equation introduced in[l]. The results are applied

tThe results presented here were obtained in the course of research sponsored by the Natural Sciences and Engineering
Research Council of Canada, grant A-2736.
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to a simple "three-element model" viscoelastic column (see Fig. 4 and Table 1). To assess the
accuracy of this approximate method, the results for a three-element model viscoelastic column
are compared with those from the "exact" solution to the same problem.

2. STATEMENT OF THE PROBLEM

Consider a simply supported perfect column of length I subjected to an axially applied load
P which is constant in time (see Fig. 1). It is assumed that the column is disturbed laterally by a
sinusoidal velocity field with amplitude Va at midspan as soon as the load P is applied. The
equation of motion of the column is obtained as

(1)

where w(x, t) denotes the lateral deflection, M(x, t) designates the bending moment and m is
the mass density of the column per unit length. The boundary and initial conditions are

( t) = (I t) = O' a2
w(0, t) = a2

w(/, t) = 0w 0, w, , 2 , 2ax (IX

(2)
oW . n7TX

w(x, 0) = 0, -at (x, 0) = l'a sm -/-.

The constitutive equation of a linearly viscoelastic material for the one-dimensional case may
be written in functional form[13, 14] as

u(x, t) =G*[€(x, t)] (3)

where u(x, t) and €(x, t) denote stress and strain at point x and time t, respectively, and G* is
an integral operator defining the material properties, the exact form of which depends on the
basic constitutive assumptions. Assuming the inverse operator, J*, to exist, we can write

(G*fl =J* or (J*fl =G*

and the strain may be expressed as

€(x, t) = J*[u(x, t)].

(4)

(5)

For example, for a temperature dependent viscoelastic material the strain-stress relation, eqn
(3), has the form [15]

(6)

Fig. I. Loading and geometry of the column.
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where T(x, I) denotes the temperature at x and t, and G is a functional of the temperature
I

history, T( x ,$). For the sake of simplicity, we restrict our treatment in this paper, to
S=T

temperature-independent viscoelastic materials. Then, eqn (6) is written for a linear viscoelastic
solid in the form

or, inversely,

O'(x, t) =E{E(X, t) +1: g(1 - T) E(X, T) dT}, I ~ 0

1 11E(X, I) = E{O'(x, I) + 0 j(1 - T) O'(X, T) dT}, I ~ 0

(7)

(8)

where the kernels g(1 - T) and j(t - T), characterizing the viscoelastic property of the material,
are functions of time only, and E denotes Young's modulus. Both stress and strain are assumed
to vanish for I < O. Further assumptions are:

(i) the initial response of the material is elastic;
(ii) the integrals in (7) and (8) take finite values as I .... 00.

The curvature-bending moment relation for the viscoelastic column can be derived using
Bernoulli-Euler beam theory assumptions in the form

M(x, t) = IG*[K(X, I)J (9)

where K(X, I) is the time-dependent curvature, while I denotes the second moment of area.
Furthermore, the curvature is given in terms of the lateral deflection, w(x, t) as

which, with the use of eqns (9) and (10) leads to

M(x, t) = - I G* [a2~~~, I)]

(10)

(11)

Substituting this expression into the equation of motion, eqn (I), one obtains the following
governing integro-differential equation

(12)

or, in terms of the inverse operator, J*

(13)

For a linear viscoelastic material, using the explicit expression of J* in eqn (8), the governing
equation is written as

+ '(1)* a2
w(x, I)] = 0

J at2 (14)
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where star (*) denotes the convolution, i.e.

j(t)* w(x, t) = f j(t - r) w(x, r) dr. (15)

3. EXACT SOLUTION

(i) The dynamic analysis: The exact solution to the governing integro-differential equation,
eqn (14), is obtained by means of Laplace transforms. To this end, we assume the lateral
deflection, w(x, t), in the form

w(x, t) = F(t) sin n;x, n = 1,2, ... (16)

which satisfies the boundary conditions, eqns (2) identically. The initial conditions in eqns (2)
become

F(O) = 0 dF(O) =
, dt va· {17)

Substituting eqns (16) and (17) into eqn. (14), one obtains the following integro-differential
equation

(18)

where Pe and Wo denote the classical Euler buckling load and natural frequency of the column,
respectively, defined by

(19)

Using the initial conditions in eqn (17), the Laplace transform of eqn (18) is obtained as

(20)

Since the kernel, j(t - r), is known for a given viscoelastic material, the time dependent
deflection function, F(t), can be obtained by taking its inverse transform.

Now determine F(t) for a simple linear viscoelastic body referred to as the "three-element
model" material (see Fig. 2). For this material, the kernel, j(t - r), takes the following explicit
form

j(t - r) = (A - J-t) e ~I'(t.,) (21)

when the coefficients A and J-t are defined in terms of the spring stiffness, E1 and E2, and the
viscosity, 1l2, of the dashpot by

A = E1 + E2, J-t = E2•

112 112
(22)

Taking the Laplace transform of eqn (21) and substituting into eqn (20) the transformed function,
F(s), takes the following form for this special case

since the denominator in eqn (23) is a cubic function of s, the inverse transform cannot be taken
without determining the numerical values for the coefficients A, J-t and W o and load ratio, PI Pe·
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EZ Vz

Fig. 2. Three element model for viscoelastic materials.

Now taking E. == E2 == 5.0 x loti psi, and 112 == 1.72 X 1013 psi sec., one obtains A == 2JL ==
5.787 x 1O-1/sec. Let the initial velocity at midspan be Vo == 0.025 in./sec., and the dimensions of
the column be: the cross-sectional area A = 25.0 in.2

; the half-depth of the cross-section
h == 2.887 in.; the width of the cross-section b == 4.330 in.; and the column length I == 200 in.
Therefore, the natural frequency is obtained as (do == 48/sec. Using the above data in eqn (23), the
time-dependent deftection function, F(I), is obtained for several load levels, and the time
dependent nondimensional amplitude AU) is plotted in Fig. 3. As can be seen from Fig. 3, if the
applied load, P, is greater than a certain critical value, referred to as the "safe load limit", Px, in
[11), (which is equal to P)2 for this special example), the amplitude of vibration decreases to a
minimum at a certain time, and then starts to grow and becomes infinitely large as time goes to
infinity. On the other hand, for P:'5 P", == P)2 the amplitude continues to decrease and finally
goes to zero as time approaches infinity. We conclude, therefore, that the column is stable
provided P:'5 P", == P)2; for P > P", == P)2, it is unstable.
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Fig. 3. Time-dependent behaviour of nondimensional amplitude of vibration, A(t), for several load levels.
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(ii) Quasi-static solution. A quasi-static solution may be derived by assuming that the
inertia force term in eqn (14) is negligibly small. The integro-differential equation, eqn (14), then
becomes

a4
w(x, t) + .!- [a2

w(x, t) + '(t)* a2
w( w, t)] = 0

ai EI ax2 J ax2 •

Using the expression for w(x, t) in eqn (16), eqn (24) takes the form

P( P)-'flF(t)- P
e

1- P
e

0 j(t-r)F(r)dr=O.

(24)

(25)

Since eqn (25) is a Volterra type homogeneous integral equation, it has only a trivial solution, i.e.
F(t) = O. This erroneously implies that there is no buckling load lower than Peo

4. APPROXIMATE SOLUTION

An approximate solution to the governing integro-differential equation, eqn(l4), is derived
by means of an approximation technique presented in [l]. This technique is based on the
assumption that the Laplace transform of I/I(t) exists, and its derivative is a slowly varying
function of 10glOt so that I/I(t) and its transform, ~(s), may be related by

with the inverse

I/I(t) = [S~(S)]1 5=(05/1)

s¢(s) = [I/I(t)] 1/=(05/51'

(26)

(27)

Now taking the Laplace transform with respect, to t of eqns (7) and (8), and using the
convolution-product rule, on finds

U(x. s) = E{i(x, s) + g(s) i(x, s)}

i(x, s) = ~ {u(x, s) + [(s) O'(x, s)}.

Define two new functions as

l/J(t) =J: j(t - r) dT, ~(t) =J: g(t - r) dr

and take the Laplace transform of eqn (29)

s~(s) = [(s), sl(s) = g(s).

(28)

(29)

no)

Substituting these definitions for g( s) and [(s) into eqns (28), and multiplying by s, one obtains

sO'(x, s) = E{si(x, s) + sl(s)si(x, s)}

(31)

si(x, s) = ~ {su(x, s) + s ~(s) su(x, s)}.

Next. assume the approximation, eqn (27), is valid for u(x, t), dx, t), l/J(t) and g(tL in which
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case the approximate stress-strain relations are obtained as

uo(X, I) = E{I + ~(/)} Eo(X, I)

I
Eo(X, I) =E{I + l/!(t)}uo(x, t)

593

(32)

where Uo and Eo denote the approximate stress and strain, respectively.
(i) The dynamic analysis. The use of these approximate stress-strain relations in the

equation of motion leads to the following approximate governing differential equation for the
stability of a column made of a Kelvin material

(33)

where wo(x, I) denotes the approximate lateral deflection, and the coefficients, k(/) and a(/), are
defined by

Assuming the approximate lateral deflection, wo(x, t), in the form

- • n1TX
wo(x, t) = Fo(t) sm-

t
-

the differential equation (33), becomes

2 -dFo 2 -_d?"" + Wo [l + W)]Fo - o.

For the three-element model material, ~(t) is given by

W) = - A~ U (l _ e -AI).

Using eqn (37) and the following transformations

At F.
T =-- U = eT F =~2' '0 t

eqn (36) reduces to the following Bessel differential equation in u

where

When P > p"" p = v2 > 0 then the solution to eqn (39) is obtained in the form

Fo(t) = vo[A(o) B(o) - B(o) A(o>rI[A(o) B(/) - B(o) A(t)]

where

'" ( I)k 2k
A(/) = ~ - 'Y e-(A/2)(2k+»1

~ 22th k! f(v+ k+ l)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41
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00 (l)k 2k
B(t) = L - y e-(AJ2X2k - v lt

k=o 22k Vk!f( - v+ k +I)

_ 00 (-I)k y2k
A(0

) - ~o 22k+v k! f (v + k + I)

_ 00 (_l)k y2k
B(O)-~o22k Vklf(-v+k+1)

. _ Av 00 ( -I)k y2k
A(o) - -T A(o) - Ak~ 22k+ v (k -I)! f (II +k + l)

. Av 00 (-Ill k

B(o)=TB(o)-A ~o22k V(k-l)!f(-v+k+l)" (42)

Consider the exponential terms in the approximate time-dependentdeftection function, Fo(t), in
eqn (41). Since A and v are real and positive for P00 < P < p.. the function B(t) rapid1y
approaches infinity while A(t) decays to zero, as t -. 00, which implies that the column will buckle
in a very short time, without vibrating, if it is disturbed by a lateral disturbance. The
time-dependent function, Fo(t), is plotted in Fig. 4 for several load levels, using the same
column which was used in the "exact" solution. Figure 4 indicates that the deflection, FaCt),
takes on very large values after only a very short time, i.e. the column will buckle almost
instantly after load application. Comparing these approximate results with those obtained from
the "exact" solution, we note that agreement between the two sets of results is very poor for
load levels Poo < P < P" For example, for the load ratio, PIPe = 0.7, the two solutions take the
same values after 0.7 sec. and 750 days, respectively.

On the other hand, since the coefficient v is imaginary for P < P00, the time-dependent
function, Fo(t), includes only exponential terms with negative powers and periodic functions.
Thus for such load levels the column will vibrate with the time-dependent amplitude decaying
to zero as t -. 00. We conclude, therefore, that the column is stable for P < P,.
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FIg. 4. Time-dependent behaviour of approximate nondimensional deflection, FoUl, for ~everalload levels.
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(ii) Quasi-slal;c solul;on
A quasi-static solution may also be derived for this approximate case. Neglecting the inertia

term in eqn (33), the governing equation is obtained as

(43)

Using the expression for wo(x, t) in eqn (35), we obtain

(44)

For a non-zero solution, the coefficient of Fo(t) should vanish which yields a continuous
eigenvalue spectrum for the critical load, Pen [I I), i.e.

Pcr = p.[I + tf1(t)]-l. (45)

In the case of a three element model column, the critical load, Pcr , and the corresponding finite
critical time, tcr for a given load P", < P < p. are obtained, respectively as[lI]

and

t =_1. ln(I-~ (P. -I)]
cr J.L >'-JL P .

(46)

(47)

The values of critical times are tabulated in Table 1 for several load ratios for a column made of
a three-element model material.

When we compare these results for a continuous spectrum of eigenvalues, P",:5 P:5 p., and
corresponding "finite critical" times with those obtained from an "exact" solution, we must
conclude that the approximate quasi-static solution and associated solution techniques and
assumptions, used also in [11], lead to erroneous results.

CONCLUSIONS

The "exact" solution to the integro-differential equation defining the behaviour of a
viscoelastic perfect column subjected to an axial load P and a lateral disturbance, shows that
such a column will vibrate with a time-dependent amplitude as a result of the initial disturbance.
If the applied load, P, is greater than the safe load limit, P"" the amplitude of vibration
decreases to a minimum at a certain time, and then starts to grow and become infinitely large as
t -+ 00 (see Fig. 3). On the other hand, for P:5 P"" the amplitude continues to decrease and
decays to zero as t-+oo. We conclude, therefore, that the column is stable provided P:5 Px : for
P> P"" it is unstable.

Table I. Approximate critical times for several load
levels

55 Voi. 18. No 7-D

Load
PIP,

0.90
0.80
0.70
0.60
0.51
0.50

Ratios Critical Time, f<,
(days)

4.7
11.2
22.4
44.0

129.0
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It is noteworthy that if the method of separation of variables is applied to the quasi-static
case, the governing integro-differential equation leads to a homogeneous Volterra integral
equation which has only a trivial solution. The quasi-static solution indicates, therefore, that
there is no buckling load lower than Pe. This shows that the quasi-static approach yields
incorrect results for the stability of perfect columns made of linearly viscoelastic materials.

On the other hand, an approximate dynamic analysis shows that the lateral deflection of the
column grows very rapidly with time, as soon as the column is disturbed and approaches
infinity as t-"oo, if P>P"" (see Fig. 4). For PsP"" the column will vibrate with a time
dependent amplitude as a result of such an initial disturbance. The amplitude decreases with
time and finally decays to zero as t -" 00.

It should be noted that for P'" < P < Pe, the deflections obtained from the approximate
solution become very large, in a very short time, compared with the values of the deflection
obtained from the "exact solution". For example, for a load ratio PIPe = 0.7, the approximate
deflection takes a certain value after 0.7 sec., while the "exact" solution indicates a deflection of
similar magnitude only after 750 days.

The approximate solution for the quasi-static case also yields a continuous eigenvalue
spectrum for load levels Poo < P < Pe, with associated "finite critical times" (see Table I). Only
for the case of p::: Poo , does this critical time go to infinity, while for P < Poo , the approximate
solution indicates no eigenvalues.

We conclude, therefore, that agreement between the results from the "exact" and "ap
proximate" solutions in the dynamic analysis is poor for load levels P > Poco We, also conclude,
that the quasi-static approach does not yield correct results for either the "exact" or ap
proximate solution.
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